IMPORTANT: Fill in pertinent information on page 3 for future reference.
Model 7000

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Specifications Sheet</td>
<td>3</td>
</tr>
<tr>
<td>Valve Programming</td>
<td>3</td>
</tr>
<tr>
<td>General Residential Installation Checklist</td>
<td>4</td>
</tr>
<tr>
<td>Valve Installation and Start-up Procedures</td>
<td>5</td>
</tr>
<tr>
<td>7000 Control Operation and Settings</td>
<td>6</td>
</tr>
<tr>
<td>Display</td>
<td>6</td>
</tr>
<tr>
<td>Water Conditioner Flow Diagrams</td>
<td>14</td>
</tr>
<tr>
<td>In Service Position</td>
<td>14</td>
</tr>
<tr>
<td>Backwash Position</td>
<td>14</td>
</tr>
<tr>
<td>Brine Position</td>
<td>15</td>
</tr>
<tr>
<td>Slow Rinse Position</td>
<td>15</td>
</tr>
<tr>
<td>Rapid Rinse Position</td>
<td>16</td>
</tr>
<tr>
<td>Brine Tank Refill Position</td>
<td>16</td>
</tr>
<tr>
<td>Power Head</td>
<td>18</td>
</tr>
<tr>
<td>Power Head Parts List</td>
<td>19</td>
</tr>
<tr>
<td>Valve Assembly</td>
<td>20</td>
</tr>
<tr>
<td>Valve Assembly Parts List</td>
<td>21</td>
</tr>
<tr>
<td>Bypass Assembly</td>
<td>22</td>
</tr>
<tr>
<td>2310 Safety Brine Valve</td>
<td>23</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>24</td>
</tr>
<tr>
<td>Error Codes</td>
<td>24</td>
</tr>
<tr>
<td>Removing Gear Box Assembly</td>
<td>26</td>
</tr>
<tr>
<td>Inserting Circuit Board</td>
<td>27</td>
</tr>
<tr>
<td>Connecting Circuit Board</td>
<td>28</td>
</tr>
<tr>
<td>Dimensions</td>
<td>29</td>
</tr>
<tr>
<td>Meter Flow Data</td>
<td>30</td>
</tr>
<tr>
<td>Injector Flow Data</td>
<td>31</td>
</tr>
</tbody>
</table>

IMPORTANT: The information, specifications and illustrations in this manual are based on the latest information available at the time of printing. The manufacturer reserves the right to make changes at any time without notice.
Model 7000

Job Specifications Sheet

Job Number ___

Model Number ___

Serial Number ___

Water Test __

Capacity Of Unit ________________________ Max. _____________ Per Regeneration

Brine Tank Size _____________________________________

Salt Setting Per Regeneration ____________________________

Valve Programming

Treated Water Capacity ________________________________ (Gallons / Liters)

Regeneration Day Override ______________________________ (Max. Days between Regen.)

Regeneration Time ________________________________ (A.M.) (P.M.)

Type of Timer ______________________________________ (with meter) (without meter)

Notes

__
__
__
__
__
__
__
Water Softener Control Valve

Water Pressure
A minimum of 25 psi inlet water pressure is required for regeneration valve to operate effectively.

Electrical Facilities
An uninterrupted alternating current (A/C) supply is required. Make sure:
• Voltage supply is compatible with unit before installation.
• Current supply is always hot and cannot be turned off with another switch.

Existing Plumbing
Condition of existing plumbing should be free from lime and iron buildup. Replace piping that has heavy lime and/or iron build-up. If piping is clogged with iron, install a separate iron filter unit ahead of the water softener.

Location of Softener and Drain
Locate the softener close to a clean working drain and connect according to local plumbing codes.

Bypass Valves
Always provide for the installation of a bypass valve if unit is not equipped with one.

CAUTION
• Minimum water pressure 20 psig.
• Maximum water pressure 125 psig.
• Minimum water temperature 34° F.
• Maximum water temperature 110° F.
• Ambient temperature 34° to 122° F (1° to 50° C)
• Disconnect all power sources before servicing.
• Always operate with cover in place.

NOTE: This product should be installed by qualified personnel. Comply with all plumbing codes when installing this product. Comply with all electrical codes when installing this product.

WARNING
The controller MUST be depressurized before removing any quick connection clips for servicing. The connector should be pushed toward the control while removing clips.
Valve Installation and Start-up Procedures

Installation Instructions

1. Place the softener tank where you want to install the unit.

 NOTE: Be sure the tank is level and on a firm, clean base.

2. Perform all plumbing according to local plumbing codes.

3. Cut the 1.05" (32mm) distributor tube flush with the top of the tank (A).

 — Deburr the outside of the tube (B) after cutting.

 — Lubricate the o-ring (C) with non-petroleum based oil.

4. Lubricate the distributor o-ring seal and tank o-ring seal. Use only non-aerosol silicone lubricant.

5. Load media and place the control valve on the tank.

6. All soldering **MUST** be done on any connections requiring soldering prior to connecting the main control valve. The main control valve will be damaged if it is connected at the time of soldering.

7. Apply **Teflon** tape to all threaded fittings.

8. On units with a bypass, place in **Bypass** position.

 — Turn on the main water supply.

 — Open a cold soft water tap nearby and let water run a few minutes or until the system is free of foreign material (usually solder) resulting from the installation. Close the water tap when water runs clean.

9. Make plumbing connections to valve.

10. Plug the valve into an approved power source.

 NOTE: Make all electrical connections according to codes.

11. Place the bypass in **Service** position. Cycle the valve to the Backwash position, and let the water flow slowly into the mineral tank until the air is purged from the unit.

12. Add water to the brine tank until the top of the air check is covered. Manually step the valve to the Brine Draw Position, and allow the valve to draw water from the brine tank until it stops.

 NOTE: The air check will check at approximately the midpoint of the screened intake area.

13. Manually step the valve to the Brine Refill Position, and allow the valve to return to **In Service** automatically.

14. With the valve in **Service**, check that there is at least 1" of water above the grid in the brine tank, if used.

15. Fill the brine tank with salt.

16. Allow the control to run automatically. Setup is now complete.
Time Clock Regeneration Valves

In normal operation the Time of Day Display may be viewed at all times. The control operates for a preset number of days between Regeneration cycles. When the number of days since the last Regeneration reaches the preset number of days, a Regeneration cycle initiates at the preset Regeneration Time.

NOTE: Program the number of days between Regeneration cycles and the Regeneration time using the 7000 Control Start-Up Procedures, page 8.

Flow Meter Equipped Valves – General

Flow meter equipped valves calculate the volume of water that the system can treat between Regeneration cycles based on the system capacity which is preset by the system manufacturer in a Master Programming Mode and the feed water hardness which is programmed in the Start-Up procedure safety factor (Master Mode only).

The remaining system capacity displays in gallons or liters. The display has a range of 0 to 9999 (gallons or liters). If the remaining capacity exceeds 9999 liters when in the Metric Mode, then the display changes to millions of liters and a letter t is displayed as the first digit. The display then has a range of t1.0 (1,000,000) to t1.9 (1,900,000).

Flow Meter Equipped Valves – Immediate Regeneration Mode

The Time Of Day display alternates with the Volume Remaining display in gallons or liters. The Meter dot flashes in direct relation to the water flow rate through the unit. As treated water is used, the Volume Remaining display counts down from a maximum value to zero and initiates a Regeneration cycle.
Flow Meter Equipped Valves – Delayed Regeneration Mode

In Normal operation the Time Of Day display alternates with the Volume Remaining display. The flow dot flashes in direct relation to the water flow rate through the unit. As treated water is used, the Volume Remaining display counts down from a maximum value to zero. If the reserve is reached, a Regeneration queues. The display shows all dashes if the entire volume is depleted before the scheduled Regeneration time. At the preset Regeneration Time, a Regeneration cycle initiates.

Control Operation During Regeneration

In Regeneration the display shows the Regeneration status two ways:

• When the valve advances to the next position, the display flashes the number of that next position followed by three dashes.
• Once the valve reaches a position the display shows that position and number of minutes left in that Regeneration step.

 NOTE: If the step time exceeds 100, the leading digit flashes.
• Once all Regeneration steps are complete, the valve returns to In Service and resumes normal operation.

 NOTE: Pressing the Extra Cycle Button during a Regeneration cycle immediately advances the valve to the next cycle step position and resumes normal step timing.

Control Operation During Programming

The control enters Program Mode with the valve in In Service. While in Program Mode the control continues to operate normally, monitoring water usage and keeping all displays up to date. Control programming is stored in memory permanently. There is no need for battery backup power.

Control Operation During a Power Failure

During a power failure all control displays and programming are stored for use upon power re-application. An inaccurate or flashing Time of Day display indicates that a power outage has occurred. During power failure the control:

• Is fully inoperative and any calls for Regeneration are delayed.
• Upon power re-application, resumes normal operation from the point that it was interrupted.
• Does not monitor the volume of water used during a power outage.
• In Delay Regeneration types, the reserve capacity is set to 1/3 the capacity.

Manually Initiating a Regeneration

A Regeneration cycle may be initiated manually (referred to as an Extra Regeneration Cycle). There are two options when starting an Extra Regeneration Cycle:

• Press and release the Extra Cycle Button:
 — Flow Meter - Immediate Regeneration controls immediately go into a Regeneration cycle.
 — For Time Clock and Flow Meter - Delayed Regeneration controls, the In Service dot begins to flash immediately and a Regeneration occurs at the pre-programmed Regeneration time.

• Press and hold the Extra Cycle Button for five (5) seconds:
 — For Time Clock and Flow Meter - Delayed Regeneration controls, the control immediately begins the Regeneration cycle.
Model 7000

7000 Control Start-Up Procedures

Set Time of Day

Press the Set Up and Set Down buttons to set time of day.

- Metric = 24 hour clock
- US = 12 hour clock with PM indicator light

Enter Control Programming Mode

- Press and hold both the Set Up and Set Down buttons for five (5) seconds to enter Programming Mode. When the program mode is entered, the program dot turns on.

The 7000 controller performs four (4) basic types of Regeneration systems. The type of system is selected by the system manufacturer and set in the Master Programming Mode. Basic systems are:

- **Time Clock**
 - The control operates for a preset number of days between Regeneration cycles. On the day that a Regeneration cycle is required the system regenerates at the preset Regeneration Time.

- **Meter Immediate**
 - The control regenerates immediately when the remaining capacity (volume of water that can be treated before a Regeneration is required) drops to zero (0).

- **Meter Delayed**
 - The control regenerates on the day that the remaining capacity drops to less than the reserve volume. Regeneration starts at the preset Regeneration Time.

CAUTION

Do not set the time of day to 12:01 PM when entering the Start-Up programming mode. Doing so causes the control to enter the Master Programming Mode and alter the factory settings, resulting in a system malfunction.
Model 7000

Programming a Meter Delayed Regenerated System

1. Feed water hardness (Display Code H).

 NOTE: The feed water hardness setting only displays when the system is set to operate as a Meter Immediate or Meter Delayed system type.

 — Press the **Set Up** or **Set Down** buttons to set the amount of feed water hardness in grains/gallon (U.S.) or degrees (metric). The system automatically calculates treated water capacity based on the feed water hardness and the system capacity preset in the Master Programming mode. "Calc" is displayed during calculations.

 Example:

 Range: 4 – 199 U.S. and metric

 — To program 9 grains / gallon (U.S.) or 9 degrees (metric) [H - 9]

 — Press the **Set Up** and **Set Down** buttons to adjust this value.

 — Press the **Extra Cycle** button once to advance to the next step.

2. Regeneration Time (No display Code)

 NOTE: The Regeneration Time setting does not display in Meter Immediate Regeneration Mode since the system regenerates immediately when the available capacity reaches zero (0).

 Identify the Regeneration Time display by observing a non-flashing colon between two sets of numbers. Set the desired time of day for **Regeneration** to occur.

 Example:

 2 o'clock A.M. regeneration time: [2:00] (P.M. Indicator Dot Off)

 — Press the **Set Up** and **Set Down** buttons to adjust this value.

 — Press the **Extra Cycle** button to exit the programming mode or press and hold the **Set Up** and **Set Down** buttons simultaneously for five (5) seconds to enter the Extended Setup Programming Mode.

Figure 5: Feed Water Hardness

Figure 6: Regeneration Time
3. EXTENDED Programming Mode

Regeneration Cycle Step Programming (Display Code 1 to 6)

Use this feature to program the Regeneration Cycle step times. The Regeneration Cycle Step being programmed appears in the first digit of the display. Each display is used to set the duration time in minutes of that specific step in the regeneration cycle.

Example:

<table>
<thead>
<tr>
<th>Cycle Step</th>
<th>dF</th>
<th>dFFF</th>
<th>FLtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 = Backwash</td>
<td>12 = Refill</td>
<td>10 = Backwash</td>
</tr>
<tr>
<td>2</td>
<td>60 = Brine Draw</td>
<td>60 = Brine Making</td>
<td>10 = Rapid Rinse</td>
</tr>
<tr>
<td>3</td>
<td>5 = 2nd Backwash</td>
<td>10 = Backwash</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 = Rapid Rinse</td>
<td>60 = Brine Draw</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12 = Refill</td>
<td>5 = 2nd Backwash</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10 = Rapid Rinse</td>
<td></td>
</tr>
</tbody>
</table>

— Use the Set Up and Set Down buttons to adjust this value.
— Press the Extra Cycle button to advance to the extended diagnostics.

4. Extended Diagnostics Mode (Viewable Only)

(Dy xx) Display Code xx = days since last Regeneration
— Press the Extra Cycle button once to advance to the next diagnostics.

(xxxx) No Display code xxxx = volume used since the last Regeneration. (yyyy) No Display code yyyy Reserve Volume.
— Press the Extra Cycle button once to Exit Extended Setup Programming Mode.

Control Programming Complete
Programming a Meter Immediate Regenerated System

1. Feed water hardness (Display Code H).

The feed water hardness setting displays only if the system is set to operate as a Meter Immediate or Meter Delayed system type.

— Press the Set Up and Set Down buttons to set the amount of feed water hardness (grains/gallon or degrees). The system automatically calculates treated water capacity based on the feed water hardness and the system capacity preset in the Master Programming mode.

Example:

Range: 4 – 199 US and Metric

— To program 9 grains / gallon (US) or 9 degrees (Metric) [H – 9]

— Press the Set Up and Set Down buttons to adjust this value.

— Press the Extra Cycle button once to Exit Setup Programming Mode or press and hold the Up and Down buttons simultaneously for five (5) seconds to enter the Extended Setup Programming Mode.

2. EXTENDED Programming Mode

Regeneration Cycle Step Programming (Display Code 1 – 6)

This Program Step is used to program the Regeneration Cycle step times. The Regeneration Cycle Step being programmed is displayed in the first digit of the display. Each display is used to set the duration time in minutes of that specific step in the **Regeneration** cycle.

Example:

<table>
<thead>
<tr>
<th>Cycle Step</th>
<th>dF</th>
<th>dFFF</th>
<th>FLtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 = Backwash</td>
<td>12 = Refill</td>
<td>10 = Backwash</td>
</tr>
<tr>
<td>2</td>
<td>60 = Brine Draw</td>
<td>60 = Brine Making</td>
<td>10 = Rapid Rinse</td>
</tr>
<tr>
<td>3</td>
<td>5 = 2nd Backwash</td>
<td>10 = Backwash</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 = Rapid Rinse</td>
<td>60 = Brine Draw</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12 = Refill</td>
<td>5 = 2nd Backwash</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10 = Rapid Rinse</td>
<td></td>
</tr>
</tbody>
</table>
Model 7000

3. **Extended Diagnostics Mode (Viewable Only)**

 (Dy xx) Display Code xx = days since last Regeneration

 — Press the Extra Cycle button once to advance to the next diagnostics.

 (xxxx) No Display code xxxx = the volume used since the last Regeneration

 — Press the Extra Cycle button once to Exit Extended Setup Programming Mode.

 Control Programming Complete

![Figure 11: Extended Diagnostics Mode](image)

Programming a Time Clock Regenerated System

1. **Regeneration Time (No Display Code)**

 The Regeneration Time display can be identified by observing a non-flashing colon between two sets of numbers. Set the desired time of day that you want **Regeneration** to occur.

 Example:

 2 o'clock A.M. regeneration time: [2:00] (P.M. Indicator Dot Off)

 — Use the Set Up and Set Down buttons to adjust this value.

 — Press the Extra Cycle button to proceed to the next step.

![Figure 12: Regeneration Time](image)

2. **Regeneration Day (Display code A)**

 Use this display to set the number of days between **Regeneration** cycles. This setting is identified by observing the letter "A" in the first digit. In the Time Clock regeneration mode, the system regenerates at the time set in Step 1 on the programmed number of days.

 Example:

 Regeneration every 7 days [A -- 7]

 — Use the Set Up and Set Down buttons to adjust this value.

 — Press the Extra Cycle button once to Exit Setup Programming Mode or press and hold the Set Up and Set Down buttons simultaneously for five (5) seconds to enter the extended setup programming mode.

![Figure 13: Regeneration Day](image)
3. Extended Programming Mode

Regeneration Cycle Step Programming (Display Code 1 – 6)

This Program Step is used to program the Regeneration Cycle step times. The Regeneration Cycle Step being programmed is displayed in the first digit of the display. Each display is used to set the duration time in minutes of that specific step in the **Regeneration** cycle.

Example:

<table>
<thead>
<tr>
<th>Cycle Step</th>
<th>dF</th>
<th>dFFF</th>
<th>FLtr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

— Use the **Set Up** and **Set Down** buttons to adjust this value.

— Press the **Extra Cycle** button once to proceed to the diagnostics.

4. Extended Diagnostics Mode (Viewable Only)

(Dy xx) Display Code xx = days since last **Regeneration**

— Press the **Extra Cycle** button once to advance to the next diagnostics.

— Press the **Extra Cycle** button once to Exit Extended Setup Programming Mode.

Control Programming Complete

Figure 14: Extended Programming Mode

Figure 15: Extended Diagnostics Mode
Model 7000

Water Conditioner Flow Diagrams

In Service Position

Figure 16: In Service Position

Backwash Position

Figure 17: Backwash Position
Model 7000

Water Conditioner Flow Diagrams

Brine Position

![Brine Position Diagram](image1)

Figure 18: Brine Position

Slow Rinse Position

![Slow Rinse Position Diagram](image2)

Figure 19: Slow Rinse Position
Model 7000

Water Conditioner Flow Diagrams

Rapid Rinse Position

[Diagram of Rapid Rinse Position]

Figure 20: Rapid Rinse Position

Brine Tank Refill Position

[Diagram of Brine Tank Refill Position]

Figure 21: Brine Tank Refill Position
Figure 22: Power Head
Model 7000

Power Head Parts List

<table>
<thead>
<tr>
<th>Item Number</th>
<th>No. Req’d</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>40968</td>
<td>motor</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10218</td>
<td>optional auxiliary switch</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40978</td>
<td>plate, upper support</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>61460</td>
<td>circuit board</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>40702</td>
<td>shaft, encoder</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>40703</td>
<td>gear, main drive</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>40704</td>
<td>cam, brine, down flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40977</td>
<td>cam, aux. switch/filter</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>40979</td>
<td>plate, lower support</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>61430</td>
<td>cover asm</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>19367</td>
<td>screw, thumb</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>13602</td>
<td>screw, 6-32x.312”</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>40980</td>
<td>backplate</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>40967</td>
<td>screw, 1/4-20x1.0”</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>15727</td>
<td>screw, 10-24x1/2”</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>11805</td>
<td>screw, 4-40x5/8”</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>40981</td>
<td>transformer, US 24V, 9.6VA</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>19791-01</td>
<td>meter cable assembly, turbine</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>41122</td>
<td>o-ring</td>
</tr>
</tbody>
</table>
Figure 23: Valve Assembly
Valve Assembly Parts List

<table>
<thead>
<tr>
<th>Item Number</th>
<th>No. Req'd</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>61050</td>
<td>valve body assembly</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>61452-10</td>
<td>piston assembly, 7000 softener, D/F 35 GPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61453-10</td>
<td>piston assembly, 7000 softener, D/F 28 GPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61452-20</td>
<td>piston assembly, 7000, filter</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>40576</td>
<td>clip, H, plastic</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>61438</td>
<td>seal and spacer kit</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>60016-01</td>
<td>brine valve, 7000</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>40577</td>
<td>turbine meter assembly</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>61XXX</td>
<td>injector assemblies</td>
</tr>
</tbody>
</table>

Part Number Injector Number

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Injector Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>61454-000</td>
<td>000</td>
</tr>
<tr>
<td>61454-00</td>
<td>00</td>
</tr>
<tr>
<td>61454-1</td>
<td>1</td>
</tr>
<tr>
<td>61454-2</td>
<td>2</td>
</tr>
<tr>
<td>61454-3</td>
<td>3</td>
</tr>
<tr>
<td>61454-4</td>
<td>4</td>
</tr>
<tr>
<td>61454-5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>BLFC Size</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>61450-12</td>
<td>3/8"</td>
<td>0.125</td>
</tr>
<tr>
<td>61450-25</td>
<td>3/8"</td>
<td>0.25</td>
</tr>
<tr>
<td>61450-50</td>
<td>3/8"</td>
<td>0.50</td>
</tr>
<tr>
<td>61450-100</td>
<td>3/8"</td>
<td>1.0</td>
</tr>
<tr>
<td>61451-12</td>
<td>1/2"</td>
<td>0.125</td>
</tr>
<tr>
<td>61451-25</td>
<td>1/2"</td>
<td>0.25</td>
</tr>
<tr>
<td>61451-50</td>
<td>1/2"</td>
<td>0.50</td>
</tr>
<tr>
<td>61451-100</td>
<td>1/2"</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>DLFC Size</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>61455-17</td>
<td>3/4"</td>
<td>1.7</td>
</tr>
<tr>
<td>61455-20</td>
<td>3/4"</td>
<td>2.0</td>
</tr>
<tr>
<td>61455-24</td>
<td>3/4"</td>
<td>2.4</td>
</tr>
<tr>
<td>61455-30</td>
<td>3/4"</td>
<td>3.0</td>
</tr>
<tr>
<td>61455-35</td>
<td>3/4"</td>
<td>3.5</td>
</tr>
<tr>
<td>61455-40</td>
<td>3/4"</td>
<td>4.0</td>
</tr>
<tr>
<td>61455-45</td>
<td>3/4"</td>
<td>4.5</td>
</tr>
<tr>
<td>61455-50</td>
<td>3/4"</td>
<td>5.0</td>
</tr>
<tr>
<td>61455-60</td>
<td>3/4"</td>
<td>6.0</td>
</tr>
<tr>
<td>61455-70</td>
<td>3/4"</td>
<td>7.0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>13303-01</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>13302-01</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>40946</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>40945</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>40950</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>40951</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>18280</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>61419</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>61xxx</td>
</tr>
</tbody>
</table>

Not Shown

<table>
<thead>
<tr>
<th>Part Number</th>
<th>DLFC Size</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>61456-8.0</td>
<td>1"</td>
<td>8.0</td>
</tr>
<tr>
<td>61456-9.0</td>
<td>1"</td>
<td>9.0</td>
</tr>
<tr>
<td>61456-10</td>
<td>1"</td>
<td>10.0</td>
</tr>
<tr>
<td>61456-12</td>
<td>1"</td>
<td>12.0</td>
</tr>
<tr>
<td>61456-15</td>
<td>1"</td>
<td>15.0</td>
</tr>
<tr>
<td>61456-20</td>
<td>1"</td>
<td>20.0</td>
</tr>
<tr>
<td>61456-25</td>
<td>1"</td>
<td>25.0</td>
</tr>
<tr>
<td>61456-30</td>
<td>1"</td>
<td>30.0</td>
</tr>
</tbody>
</table>

| Not Shown | 12763-10 | stuffer tool assembly |
IMPORTANT

To bypass the valve, turn bypass knob on both sides of the valve to bypass position. (See Figure 24B.)

When returning to service, put the inlet into service before the outlet.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>No. Req’d</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>40569</td>
<td>7000 bypass assembly</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>40563</td>
<td>connector, 1” NPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40563-10</td>
<td>connector, 1” BSP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40565</td>
<td>connector, 1-1/4” NPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40565-10</td>
<td>connector, 1-1/4” BSP</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40953</td>
<td>connector, 1-1/4” sweat, copper</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>40576</td>
<td>clip, H, plastic</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>40951</td>
<td>o-ring</td>
</tr>
</tbody>
</table>

Not Shown:

<table>
<thead>
<tr>
<th>Item Number</th>
<th>No. Req’d</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>61462</td>
<td>7000 valve bypass service kit</td>
</tr>
</tbody>
</table>

(includes all internal parts for 7000 bypass assembly—bypass body not included)
2310 Safety Brine Valve

<table>
<thead>
<tr>
<th>Item Number</th>
<th>No. Req'd</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>60014</td>
<td>2310 safety brine valve</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>60068</td>
<td>2310 float assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60026-30</td>
<td>float assembly red/white (float fill)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>60002</td>
<td>#500 air check</td>
</tr>
</tbody>
</table>

Figure 25: 2310 Safety Brine Valve
Troubleshooting

Error Codes

NOTE: Error Codes appear on the In Service display.

There are three possible error codes:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Probable Cause</th>
<th>Recover and Resetting</th>
</tr>
</thead>
</table>
| (Err 0) | Drive motor is stalled | Unplug the unit from the power source. When power is restored to the unit, the Err _
| (Err 1) | Drive motor is running continuously | display code clears. If the condition causing the error has not been resolved the Err _
| | | code reappears in the four digit display. Do not attempt to troubleshoot this problem any |
| (Err 2) | There have been more than 99 days since the last Regeneration | Regeneration must occur for the unit to recover, the display to clear and the valve to function normally. Contact the installer for service. |

WARNING

The controller MUST be depressurized before removing any quick connection clips for servicing. The connector should be pushed toward the control while removing clips.

General Troubleshooting

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Softener fails to regenerate.</td>
<td>A. Electrical service to unit has been interrupted.</td>
<td>A. Assure permanent electrical service (check fuse, plug, pull chain or switch).</td>
</tr>
<tr>
<td></td>
<td>B. Timer is defective.</td>
<td>B. Replace timer.</td>
</tr>
<tr>
<td></td>
<td>B. No salt in brine tank.</td>
<td>B. Add Salt to brine tank and maintain salt level above water level.</td>
</tr>
<tr>
<td></td>
<td>C. Injector screen plugged.</td>
<td>C. Clean injector screen.</td>
</tr>
<tr>
<td></td>
<td>D. Insufficient water flowing into brine tank.</td>
<td>D. Check brine tank fill time and clean brine line flow control if plugged.</td>
</tr>
<tr>
<td></td>
<td>E. Hot water tank hardness.</td>
<td>E. Repeated flushing of the hot water tank is required.</td>
</tr>
<tr>
<td></td>
<td>F. Leak at distributor tube.</td>
<td>F. Make sure distributor tube is not cracked. Check O-Ring and tube pilot.</td>
</tr>
<tr>
<td></td>
<td>G. Internal valve leak.</td>
<td>B. Replace seals and spacers and/or piston.</td>
</tr>
</tbody>
</table>
Model 7000

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Unit used too much salt.</td>
<td>A. Improper salt setting.</td>
<td>B. Excessive water in brine tank.</td>
<td>A. Check salt usage and salt setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. See Problem No. 7.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Clean control and add mineral cleaner to mineral bed. Increase frequency of regeneration and/or backwash time.</td>
</tr>
<tr>
<td></td>
<td>C. Inlet of control plugged due to foreign material broken loose from pipe by recent work done on plumbing system.</td>
<td></td>
<td>C. Remove pistons and clean control.</td>
</tr>
<tr>
<td>5. Loss of mineral through drain line.</td>
<td>A. Air in water system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Drain line flow control too large.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Timer not cycling.</td>
<td>C. Foreign material in brine valve.</td>
<td>B. Clean injector and screen.</td>
</tr>
<tr>
<td></td>
<td>C. Foreign material in brine line flow control.</td>
<td>D. Power loss during brine fill.</td>
<td>C. Replace timer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Replace brine valve seat and clean valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Clean brine line flow control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. Check power source.</td>
</tr>
</tbody>
</table>
Model 7000

Removing Gear Box Assembly

1. Unplug the power source.
2. With 3/8" nut driver, turn the cycle cam counter-clockwise to the position shown in Figure 26 above.
3. Slightly pull the two tabs outward and push the gearbox slightly upward to remove.
4. When returning valve to service after powerhead disassembly, manually step valve through regeneration using the extra cycle button until valve is in service.

Figure 26: Removing the Gear Box Assembly
Model 7000

Inserting Circuit Board

1. To insert the circuit board, align the notches on the left side of the board with the flexible finger on the power head. Apply pressure to the left while rotating the board back.

2. When all the way down, snap the circuit board into place under the notches on the right.
After the circuit board is installed:
1. Connect the motor wires (A) to the motor connector (A1) on board.
2. Connect the transformer cable (B) to the transformer connector (B1) on board.
3. Connect the meter cable (C) to the meter cable connector (C1) on board.
4. Connect the valve end to the opening on the valve body.
5. Thread meter cable (D1) and power wire (D2) along path shown in Figure 29.
Model 7000

Dimensions

Figure 30: Dimensions
Model 7000

Meter Flow Data

7000

Figure 31: 7000 Flow Data

- Softener Valve 35 GPM w/ Meter and 32mm Distributor Pilot
 $C_v = 9.2$

- Softener Valve 28 GPM w/ Meter and 1 in. Distributor Pilot
 $C_v = 7.2$

- Filter Valve w/ 32mm Distributor Pilot
 $C_v = 8.9$

TR18753 softener
TR18688 Filter
Injector Flow Data

A) Total Flow, 3/8" Brine System
B) Total Flow, 1/2" Brine Line
C) Rinse
D) Brine Draw, 3/8" Brine System
E) Brine Draw, 1/2" Brine Line

Note: All data taken with 2310 Safety Brine Valve and 500 Air Check

Figure 32: 7000 Injectors